气象百科

article

当前位置: 首页 > 气象百科

温室气体

更新时间:2024-06-15点击次数:

温室气体

时间: 2014-12-06 16:06:54 来源:陕西威瑞仪器仪表有限公司
温室气体指的是大气中能吸收地面反射的太阳辐射,并重新发射辐射的一些气体,如水蒸气、二氧化碳、大部分制冷剂等。它们的作用是使地球表面变得更暖,类似于温室截留太阳辐射,并加热温室内空气的作用。
目录
  • • 名称来源
  • • 温室气体介绍
  • • 减量方向
  • • 各国的减排政策
  • • 减排目标
  • • 浓度增加的原因
  • • 危害影响
  •    • 危害
  •    • 危害健康
  •    • 对气候的影响
  •    • 全球碳循环

[显示部分][显示全部]

名称来源

温室气体

《京都议定书》1820年之前,没有人问过地球是如何获取热量的这一问题。正是在那一年,让-巴普蒂斯特-约瑟夫·傅里叶傅里叶(1768~1830年,法国数学家与埃及学家),回到法国后,他整年披着一件大衣,将大部分时间用于对热传递的研究。他得出的结论是:尽管地球确实将大量的热量反射回太空,但大气层还是拦下了其中的一部分并将其重新反射回地球表面。他将此比作一个巨大的钟形容器,顶端由云和气体构成,能够保留足够的热量,使得生命的存在成为可能。他的论文《地球及其表层空间温度概述》发表于1824年。当时这篇论文没有被看成是他的最佳之作,直到19世纪末才被人们重新记起。

其实只因为地球红外线在向太空的辐射过程中被地球周围大气层中的某些气体或化合物吸收才最终导致全球温度普遍上升,所以这些气体的功用和温室玻璃有着异曲同工之妙,都是只允许太阳光进,而阻止其反射,近而实现保温、升温作用,因此被称为温室气体。其中既包括大气层中原来就有的水蒸气、二氧化碳、氮的各种氧化物,也包括近几十年来人类活动排放的氯氟甲烷(HFCs)、氢氟化物、全氟化物(PFCs)、硫氟化物(SF6)等。种类不同吸热能力也不同,每分子甲烷的吸热量是二氧化碳的21倍,氮氧化合物更高,是二氧化碳的270倍。不过和人造的某些温室气体相比就不算什么了,目前为止吸热能力最强的是氯氟甲烷(HFCs)和全氟化物(PFCs)。

温室气体介绍

温室气体全球分布地球的大气中重要的温室气体包括下列数种:水蒸气(H2O)、臭氧(O3)、二氧化碳(CO2)、氧化亚氮(N2O)、甲烷(CH4)、氢氟氯碳化物类(CFCs,HFCs,HCFCs)、全氟碳化物(PFCs)及六氟化硫(SF6)等。由于水蒸气及臭氧的时空分佈变化较大,因此在进行减量措施规划时,一般都不将这两种气体 纳入考虑。至于在1997年于日本京都召开的联合国气候化纲要公约第三次缔约国大会中所通过的〔京都议定书〕,明订针对六种温室气体进行削减,包括上述所提及之:二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、氢氟碳化物(HFCs)、全氟碳化物(PFCs)及六氟化硫(SF6)。其中以后三类气体造成温室效应的能力最强,但对全球升温的贡献百分比来说,二氧化碳由于含量较多,所佔的比例也最大,约为55%。

减量方向

CO2排放减量

化石燃料燃烧为二氧化碳人为排放之主要来源,企业/产业于因应时,可资减量之方向包括:
能源替代:以天然气替代其他燃料。
采用高效率或节电设备。
引进再生能源(风力、太阳能等)。
评估及增进废弃物再利用。
资源物回收。
节约用水、废水减量以降低废水处理负荷。
废弃物减量,以降低废弃物焚化、掩埋或其他物理化学处理程序之负荷。
节约用电:照明管理、夏季空调管理及建筑物自然採光、防晒之设计。
环保标章或环境友善产品之开发、改良。
环境绿化。
控制人口增长。

CH4排放减量

甲烷(CH4)多属天然排放,自然界的生物厌氧腐解作用本会有CH4之排放,如水体流动性不高之湖泊、湿地等均有较高贡献。而人为活动造成的CH4排放因素则有自然水体受生活污水及工业废水的污染、农业畜牧活动及工业製造程序等。

农业/畜牧业:
有机堆肥管理,及其臭气的妥善处理或回收能源。
避免然烧农作废弃物或以焚烧大区域农作地作为农耕/开发方式。

工业程序:
降低储油输油设施之洩漏、逸散。
燃烧系统妥善管理、维护,降低意外或跳机事件之频率。
储油槽设置隔热装置,降低逸散。
涂装改採低油性或无油性涂料施作。
垃圾掩埋场沼气引燃或回收能源。
废水场厌氧处理之沼气处理或回收热能。

N2O排放减量

氧化亚氮(N2O)人为排放源多为农业/畜牧之相关活动,工业程序之排放则以需用氮元素相关化工原料製程为主如硝酸(Nitric Acid)、己二酸(Adipic Acid)(以硝酸为反应原料之一)等。

农业/畜牧业:
有机堆肥管理,及其臭气的妥善处理或回收能源。
避免然烧农作废弃物或以焚烧大区域农农作地作为农耕/开发方式。

工业程序:
提高相关化学品反应主产品生成率(程序替代或设备改良方式均可达成)。
相关化学品化学反应后端设置De-NOx设施。
焚化炉(特别是生物污泥焚化炉) 设置De-NOx设施。
生活污水妥善处理。

氢氟碳化物(HFCs)、全氟化碳(PFCs)、六氟化硫(SF6)排放减量

氢氟碳化物(HFCs)、全氟化碳(PFCs)、六氟化硫(SF6)多用于替代蒙特娄议定书列管破坏臭氧层物质(ODS):氟氯碳化物(CFCs)。HFCs、PFCs相关用途包括冰箱空调冷媒、灭火剂、气胶、清洗溶剂、发泡剂等;而SF6则有用于绝缘气体、灭火剂等。该三类管制温室气体于製造及使用阶段均可能造成排放。
选用CFCs替代品时,同时考量GWPs(Global Warming Potentials)低者。GWPs参见表列。
空调、灭火系统之相关管路避免洩漏。
用于清洗溶剂时,配合其他清洗程序及清洗设施改善,提昇清洗效率,降低清洗溶剂用量。
清洗溶剂回收系统改善,提昇回收量、降低溶剂散失量。
发泡产品製造程序确实做好废气收集及处理。

各国的减排政策

气候变化与温室气体减排发达国家在减少温室气体排放方面主要是采取具有综合性的经济和财政政策,包括:自愿协议、能源/二氧化碳税、排放贸易、可再生能源或热电联产生产配额、能源效率标准、对可再生能源等的直接资金鼓励如优惠费率、赠款、免税措施等等。但是这些政策随着实施情况的差别,也在发生不断变化。以能源/CO2税收为例,已经从单纯税收向“税收+补贴”的形式转变。

从上世纪90年代初,一些发达国家为了提高财政收入和/或降低对国外石油供应的依赖程度而开始实行能源或以燃料碳含量为依据的CO2税。由于能源/CO2税具有减少能源消费和温室气体排放的作用,许多发达国家都把能源/二氧化碳税作为减少温室气体排放的重要措施。但是,后来,为了避免能源/二氧化碳税影响本国工业在世界市场上的竞争力,一些国家对高耗能部门实行了低税率,挪威降低了海上油气生产的CO2税率,瑞典制造业的CO2税率已经改为标准税率的35%,某些能源密集型工业的税率也已经降低到接近为零税率,英国的能源密集型工业的税率仅为标准税率的20%。为了激励节能技术的发展,又避免影响本国工业在国际市场的竞争力,很多国家变税收为补贴。实行了对可再生能源和热电联产等高能效技术的税收优惠或减免政策,以鼓励其供应和消费。从供应端来说,主要包括对与可再生能源生产或热电联产相关的各种税收如生产税、固定资产税、增值税、进口关税等的优惠或减免。

英国政府为热电联产的发展制定了税收优惠政策。2002年,英国的热电联产装机为4700MW,按照政府的目标,在2010年时要建成高效的热电联产10000MW,为此英国政府对热电联产不征收气候变化税,并以税收优惠的形式对投资热电联产的企业提供投资补助。

法国对热电联产企业减少50%的企业税,地方政府可以将减少率提高到最多100%。对可再生能源的使用也实施了税收优惠政策,通过税收优惠和降低增值税率,企业用于购买可再生能源设备的成本将降低15%,同时,对可再生能源投资的企业一年以后可以享受加速折旧的政策。

减排目标

中国:到2020年中国单位国内生产总值二氧化碳排放比2005年下降40%-45%,作为约束性指标纳入国民经济和社会发展中长期规划,并制定相应的国内统计、监测、考核办法。通过大力发展可再生能源、积极推进核电建设等行动,到2020中我国非化石能源占一次能源消费的比重达到15%左右;通过植树造林和加强森林管理,森林面积比2005年增加4000万公顷,森林蓄积量比2005年增加13亿立方米。

美国:将在哥本哈根气候变化大会上承诺2020年温室气体排放量在2005年基础上减少17%。

浓度增加的原因

大气中的二氧化碳是植物光合作用合成碳水化合物的原料,它的增加可以增加光合产物,无疑对农业生产有利。同时,它又是具有温室效应的气体,对地球热量平衡有重要影响,因此它的增加又通过影响气候变化而影响农业。此外,大气中具有温室效应的微量气体还有甲烷、氯氟烃、一氧化碳、臭氧等,总的温室效应中二氧化碳的作用约占一半,其余为以上各种微量气体的作用。

二氧化碳浓度有逐年增加的趋势,50年代其质量分数年平均值约315×10(-6),70年代初已增加至325×10(-6),目前已超过345×10(-6),平均每年增加1.0~1.2×10(-6),或每年约以0.3%的速度增长。综合多数测定结果,在工业革命以前的二氧化碳质量分数为275×10(-6)。

大气中二氧化碳浓度增加的主要原因是工业化以后大量开采使用矿物燃料。1860年以来,由燃烧矿物质燃料排放的二氧化碳,平均每年增长率为4.22%,而近30年各种燃料的总排放量每年达到50亿吨左右。

大气中二氧化碳增加的另一个主要原因是采伐树木作燃料。森林原是大气碳循环中的一个主要的“库”,每平方米面积的森林可以同化1~2kg的二氧化碳。砍伐森林则把原本是二氧化碳的“库”变成了又一个向大气排放二氧化碳的“源”。据世界粮农组织(FAO,1982)估计,70年代末期每年约采伐木材24亿立方米,其中约有一半作为燃柴烧掉,由此造成的二氧化碳质量分数增加量每年可达0.4×10(-6)左右。

近200年来,另一个主要的温室气体--甲烷的增加也十分迅速。人和草食动物的肠道、粪便、沼泽地,稻田等都是产生甲烷的“源”。此外,人类在开采天然气和煤炭时,也向大气中排放甲烷。在工业化以前,大气中的甲烷的质量分数只有0.7×10(-6),现在已接近1.9×10(-6),预计到2030年可达到2.34×10(-6)。

氯氟烃是近50年工业污染的结果,70年代初首次检测到大气中的氯氟烃。由于氯氟烃可以破坏大气臭氧层而且本身又具有温室效应,因而已受到各国重视。

根据以上综合分析,如果按现在二氧化碳等温室气体浓度的增加幅度,到21世纪30年代,二氧化碳和其它温室气体增加的总效应将相当于工业化前二氧化碳浓度加倍的水平,可引起全球气温上升1.5~4.5℃,超过人类历史上发生过的升温幅度。由于气温升高,两极冰盖可能缩小,融化的雪水可使海平面上升20~140cm,对海岸城市会有严重的直接影响。

危害影响

危害

气候变化及其影响是多尺度、全方位、多层次的,正面和负面影响并存,但负面影响更受关注。全球变暖对许多地区的自然生态系统已经产生了影响,如气候异常、海平面升高、冰川退缩、冻土融化、河(湖)冰迟冻与早融、中高纬生长季节延长、动植物分布范围向极区和高海拔区延伸、某些动植物数量减少、一些植物开花期提前,等等。

危害健康

美国环境保护署认定,二氧化碳等温室气体是空气污染物,“危害公众健康与人类福祉”,人类大规模排放温室气体足以引发全球变暖等气候变化。

对气候的影响

二氧化碳等温室气体的增加对气候和生态系统的影响是一个更为复杂的问题。二氧化碳增加虽然有利于增加绿色植物的光合产物,但它的增加引起的气温和降水的变化,会影响和改变气候生产潜力,从而改变生态系统的初级生产力和农业的土地承载力。这种因气候变化而对生态系统和农业的间接影响,可能大大超过二氧化碳本身对光合作用的直接影响。按照气候模拟试验的结果,二氧化碳加倍以后,可能造成热带扩展,副热带、暖热带和寒带缩小,寒温带略有增加,草原和荒漠的面积增加,森林的面积减少。二氧化碳和气候变化可能影响到农业的种植决策、品种布局和品种改良、土地利用、农业投入和技术改进等一系列问题。因此在制定国家的发展战略和农业的长期规划时,应该考虑到二氧化碳增加可能导致的气候和环境的变化背景。这个问题对于面临人口膨胀和人均资源贫乏两大压力的我国,显得尤为重要和紧迫。

全球碳循环

甲烷(CH4):甲烷是在缺氧环境中由产甲烷细菌或生物体腐败产生的,沼泽地每年会产生150Tg(1T=1012)消耗50Tg,稻田产生100Tg消耗50Tg,牛羊等牲畜消化系统的发酵过程产生100-150Tg,生物体腐败产生10-100Tg,合计每年大气层中的甲烷含量会净增350Tg左右。它在大气中存在的平均寿命在8年左右,可以通过下面的化学反应:
CH4 + OH --> CH3 + H2O
消耗掉,而用于此反应的氢氧根(OH)的重量每年就达到500Tg。
一氧化二氮(N2O):它在大气层中的存在寿命是150年左右,尽管在对流层中是化学惰性的,但是可以利用太阳辐射的光解作用在同温层中将其中的90%分解,剩下的10%可以和活跃的原子氧O(1D)反应而消耗掉。即使如此大气层中的N2O仍以每年0.5-3Tg的速度净增。
N2O + hv --> N2 + O(1D)
N2O + O(1D) --> N2 + O2
N2O + O(1D) --> 2NO
氯氟碳化合物(CFC-11和CFC-12):它们在对流层中也是化学惰性的,但也可在同温层中利用太阳辐射光解掉或和活性碳原子反应消耗掉。
CCl3F + hv --> CCl2F + Cl,
Cl2F2 + hv --> CClF2+ Cl
CCl3F + O(1D) --> CCl2F + ClO
CCl2F2 + O(1D) --> CClF + ClO
通过以上的文字我们从根本上了解了温室效应,及引发这种效应的各种气体的存在情况,我们不禁会对它对环境的影响产生好奇。其实和许多别的事情一样,这种影响也是相互的,接下去我们就看看全球变暖也就是温度和各种现象之间的相互制约关系。

大气中主要的温室气体是水汽(H2O),水汽所产生的温室效应大约占整体温室效应的60%~70%,其次是二氧化碳(CO2)大约占了26%,其他的还有臭氧(O3),甲烷(CH4),氧化亚氮(N2O)全氟碳化物(PFCs)、氢氟碳化物(HFCs)、含氯氟烃(HCFCs)及六氟化硫(SF6)等。